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ABSTRACT: The rapid detection of biological contaminants, such as Escherichia coli O157:H7 and Salmonella enterica, on foods
and food-processing surfaces is important to ensure food safety and streamline the food-monitoring process. Laser-induced
breakdown spectroscopy (LIBS) is an ideal candidate technology for this application because sample preparation is minimal and
results are available rapidly (seconds to minutes). Here, multivariate regression analysis of LIBS data is used to differentiate the
live bacterial pathogens E. coli O157:H7 and S. enterica on various foods (eggshell, milk, bologna, ground beef, chicken, and
lettuce) and surfaces (metal drain strainer and cutting board). The type (E. coli or S. enterica) of bacteria could be differentiated
in all cases studied along with the metabolic state (viable or heat killed). This study provides data showing the potential of LIBS
for the rapid identification of biological contaminants using spectra collected directly from foods and surfaces.
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■ INTRODUCTION

The need to detect biological contaminants in foods and on
food surfaces and the importance of this capability for food
safety is well-understood and documented. Effective measures
taken to ensure food safety often hinge on the ability to control
the food processing environment and rapidly detect the
presence of biological contaminants in foods and on food-
processing surfaces.1 Escherichia coli O157:H7 and Salmonella
enterica are biological contaminants that have contributed to
recent outbreaks of illness resulting from consuming con-
taminated foods. E. coli is a bacterium species commonly found
in warm-blooded animals, and E. coli O157:H7 is a serotype
that is known to cause illness in people. An E. coli O157:H7
infection can result in moderate to severe illness or death, with
most of the deaths occurring in children under 5 years of age or
the elderly,2 and a common source of infection is beef;
however, other foods, such as lettuce and raw milk, have also
been shown to cause illness.3 S. enterica is also responsible for
severe illness and death in people. Common sources of
infection are meat, poultry, eggs, milk, and products of eggs and
milk.4 The ability to rapidly detect the presence of these two
biological contaminants is an important step in enhancing food
safety.
Laser-induced breakdown spectroscopy (LIBS) is an analysis

technique originally demonstrated in the early 1960s and is an
outgrowth of atomic emission spectroscopy (ca. 1860), in
which elemental composition was determined by placing
samples in a flame and observing the resulting colors.5 In
LIBS, a laser plasma is used in place of a flame. The plasma is
created by focusing laser pulses onto the surface of a sample
using a lens. The plasma vaporizes and excites sample material
(nanogram to microgram amounts), and the de-excitation/

recombination light is observed (typically using a fiber optic to
collect the light and direct it into a spectrometer). The
collected light produces a spectrum that includes spectral
signals from bulk (substrate) material, the sample surface, and
the atmosphere surrounding the sample. Because all that is
required to create the plasma is focused light, often no sample
preparation is required for LIBS analysis. Over the years, LIBS
has been applied to a broad range of applications by analyzing
the spectrum for individual elemental emissions.6−9 In recent
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Table 1. Estimate of the Number of Cells Deposited in Each
Contaminated Area for the Samples Used in This Studya

dilution CFU in 100 μL

E. coli d5 3.7 × 104

E. coli d6 3.7 × 103

E. coli d7 3.7 × 102

E. coli d8 3.7 × 101

E. coli d9 3.7 × 100

S. enterica d4 9.7 × 105

S. enterica d5 9.7 × 104

S. enterica d6 9.7 × 103

S. enterica d7 9.7 × 102

S. enterica d8 9.7 × 101

aControl samples (uncontaminated) labeled as TSB d6, for example,
contained the same amount of TSB used in a corresponding
contaminated sample (e.g., E. coli d6).
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years, both classification and identification of material type
have been accomplished by applying advanced chemometric
techniques to the LIBS spectrum.10 Numerous papers have
described the use of chemometrics for the analysis of LIBS
spectra for a variety of biological applications.11−25 For food
safety, the use of LIBS in combination with multivariate reg-
ression analysis has previously been applied successfully to the
detection of pesticide contaminants in pellets made of powdered
spinach and rice26 and in the very complex and “dirty” (unknown
and complex sample composition) matrices of tissue fats and
rendering oils.27

The goal of this study is to expand our previous work
in the use of LIBS with differentiation algorithms based
on chemometric analysis for pesticide-related food safety
applications to the detection of biological contaminants on
foods and food-processing surfaces using the same methods
of analysis. The specific objectives of this work are to
demonstrate that mathematical analysis can be used to
create prediction models to differentiate spectra or groups of
spectra collected from samples to show that (1) contami-
nated samples can be differentiated from uncontaminated
samples, (2) the type of contaminants can be identified,
and (3) the metabolic state of the contaminant can be
determined.

■ MATERIALS AND METHODS
Food and surface samples were prepared with various concentrations
of E. coli ATCC 438928,29 and S. enterica ATCC 8324,30,31 as described
below. Bacterial cultures were initiated from an isolated colony
transferred from a trypticase soy agar (TSA, BBL, Sparks, MD) plate
to 5 mL of tryptic soy broth (TSB) and incubated at 37 °C and 200 rpm,
overnight. Broth growth was diluted in autoclaved deionized (DI)
water for aerobic plate count enumeration and inoculation onto
food surfaces (“contaminated”). For metabolic state investigations,
duplicate 5 mL TSB cultures of E. coli and S. enterica were placed in a
95 °C water bath for 30 min. These heat-treated cultures, designated
as “killed”, were then diluted in DI water for inoculation onto foods

Table 2. Aerobic Plate Count Results for the Heat-Killed
Pathogen Samples and the Uninoculated Food Samplesa

dilution CFU in 100 μL

heat-killed E. coli 0
heat-killed S. enterica 0

ground beef TNTC

bologna 1.0 × 103

chicken TNTC

milk TNTC

eggshell 1.5 × 103

lettuce 2.5 × 103

aTNTC = too numerous to count.

Table 3. Summary of All Samples and Dilutions Included in This Studya

sample E. coli S. enterica HKb E. coli HKb S. enterica blank TSB

ground beef d5−d9 d5−d9 water
bologna d5−d9 d5−d9 water d5−d9
chicken d4−d8 d4−d8 water
milk d4−d8 milk
eggshell d5−d9 d4−d8 d5−d9 d4−d8 water d5−d9
lettuce d5−d9 water d5−d9
drain d5 d4 d5 d4 water d4−d5
cutting board d5 d4 d5 d4 water d5
swab from eggshell d4−d8 water
swab from cutting board d5 d4

aSee Table 1 for the number of cells applied to the samples at each dilution. bHK = heat killed.

Figure 1. Experimental setup used to collect LIBS spectra. The samples were located inside a biosafety hood. LIBS emission was collected along the
path of the laser light to remove parallax.
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and surfaces. Samples inoculated with either live or killed bacteria were
considered “contaminated”. As a control sample (“uncontaminated”),
TSB was diluted in DI water and pipetted onto raw foods and surfaces.
Samples inoculated with plain DI water were also included as “blank”
controls (“uncontaminated”).
Great care was taken in the sample preparation to ensure that the

only difference between the contaminated and uncontaminated
samples was the presence or absence of the bacteria. The ground
beef, lettuce, bologna, eggs, chicken, plastic cutting board, and metal
drain strainer used here were all purchased from local retail shops. All
foods were stored at 4 °C in a chilling incubator (Ectotherm, Solana
Beach, CA) when not in use. Food samples were divided into 4 × 2 cm
(8 cm2) sections aseptically using autoclaved utensils and placed in
100 mm2 × 15 mm high disposable Petri dishes (VWR, Aurora, CO).
Ground beef was removed from store packaging and transferred
directly to Petri dishes. Romaine lettuce leaves were separated by
cutting ∼3.8 cm from the bottom core; the outer leaves were
discarded; and the middle leaves were placed in sterile plastic bags and
rinsed 4 times with DI water. This was followed by two rinses with
70% ethanol, and then the lettuce was allowed to dry on a sterile
surface before being cut and transferred to Petri dishes. Bologna slices
were transferred to the surface of an opened sterile plastic bag, cut, and

then transferred to Petri dishes. Eggs were rinsed under running DI for
1 min, sprayed with 70% ethanol, allowed to dry on a sterile plastic bag
surface in a biological safety cabinet, and then cracked (using clean
gloved hands and a sterile knife) into a disposable Petri dish. Liquid
egg was removed, and the eggshell was placed in Petri dishes and
sprayed again with 70% ethanol. The shell pieces were broken using
sterile utensils into sizes just small enough to lie flat, transferred to
Petri dishes, and arranged to cover a 4 × 2 cm area. Raw chicken
breast tenderloins (with up to 15% natural chicken broth, salt, and
carrageenan) were rinsed under running DI water and placed in Petri
dishes to dry in a biological safety cabinet. Reduced fat milk (2%) was
pipetted into centrifuge tubes for inoculation before transfer to TSA
plates. Non-food surfaces of the aluminum sink drain strainer and a
nonporous plastic cutting board were inoculated in a 4 × 2 cm marked
area by pipetting 100 μL of culture dilutions in small droplets and
allowed to air-dry in a biological safety cabinet.

Replicate samples were inoculated by pipetting 100 μL of diluted E. coli
or S. enterica over the entire 4 × 2 cm sample area. Droplets were spread
over the surface using the pipet tip, and the area of inoculation was
marked, so that LIBS data collection occurred only over the inoculated
area for the contaminated samples or an uninoculated sample area for the
uncontaminated samples. Various dilutions of pathogen samples were
prepared to assess detection performance over a range of contamination
levels. A portion of the prepared dilutions were heat-killed to assess the
detection performance for different metabolic states. An estimate of the

Figure 3. Prediction results obtained for inputting test spectra into a
(A) model designed to differentiate E. coli independent of the
metabolic state on a metal drain strainer (single dilution) and (B)
model designed to differentiate S. enterica in milk across (a range of
dilutions) from uncontaminated milk. For ease of viewing, some
symbols have been displaced horizontally from each other.

Figure 2. Prediction results obtained for inputting test spectra into a
model designed to differentiate the contaminants E. coli and S. enterica
independent of the metabolic state on a plastic cutting board from an
uncontaminated cutting board (only water or TSB). Unaveraged
prediction values are plotted in panel A, and averaged prediction
values are plotted in panel B. For ease of viewing, some symbols have
been displaced horizontally from each other.
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number of cells deposited in each contaminated area for the samples used
in this study is found in Table 1. It should be noted that the TSB control
samples, labeled, for example, as TSB d6, contained the same amount of
TSB as an E. coli contaminated sample, labeled as E. coli d6.
Aerobic plate counts of each uninoculated food sample were used to

detect any background microflora. For the plate counts, 1 g of food
sample from each package was aseptically weighed into a 50 mL
conical tube to which was added 9 mL of 0.1 M sodium phosphate
buffer (pH 6.8). The tube was vigorously vortexed for 1 min, and then
1 mL was plated on TSB agar plates. The first dilution (d1) was
diluted again 10-fold and plated. Plates were incubated at 37 °C and
colony forming units (CFU) per milliliter were determined after a
period of 24 h. In cases where no growth was detected, the plates were
incubated for an additional 24 h and re-examined. The aerobic plate
count results for the heat-killed pathogen samples and the
uninoculated food samples are found in Table 2. As seen from this
table, all uncontaminated food samples had unknown bacteria present

on the samples prior to inoculation and the heat-killed dilutions had
no viable cells.

For swab testing, sterile cotton-tipped swabs (Puritan Medical
Products Company, LLC, Guilford, ME) were dipped into a 50 mL
conical tube of autoclaved DI water and pressed against the side of the
tube to remove excess water. A swab was then rubbed across the
inoculated surface area of a sample. Swab tests were performed by
wiping the surface area with the swab 4−5 times, then turning the
swab, and repeating several times. A summary of all of the samples and
dilutions used in this study is found in Table 3; however, only a subset
of the predictive plots have been included here as needed to illustrate
the differentiation capability of the analysis methods used in this study.

LIBS data were collected directly from the foods, surfaces, and
swabs of the foods and surfaces using the experimental setup presented
in Figure 1 previously described.32,33 Pulses (1064 nm wavelength,
60 mJ/pulse, and 10 Hz repetition rate) from a model CFR 400
Q-switched Nd:YAG laser (Big Sky Laser, Bozeman, MT) were
focused onto the sample, which was manually held in the laser beam
path. Because this study involved viable bacterial contaminations, the
samples were positioned inside a biological safety level-2 hood during
the data collection. LIBS data were collected directly from the surface
of the solid food surface and swab samples. The liquid milk sample was
spread on agar plates to prevent splashing of contaminated material
during data collection. Plasma light was collected using an off-axis
parabolic mirror and a fiber optic and then routed to a model AvaSpec-
2048-2-USB2 dual channel fiber-optic spectrometer (Avantes, Broom-
field, CO). A hole in the parabolic mirror permitted the optical path of
the laser pulses and light collection to be collinear, eliminating parallax.
Each recorded spectrum represented the average of 10 spectra
(detector acquisition parameters: 1 μs delay and 1.1 ms window). A
total of ∼100 spectra were recorded from each sample.

Commercially available software, The Unscrambler (Camo
Software, Inc., Woodbridge, NJ), was used for analysis, and detailed
accounts of how analysis was accomplished have been published
previously.27,32−34 The method of analysis employed was partial least-
squares regression with only one response variable (PLS1). This is a
method of analysis in which the variations in one response variable (Y
variable) are related to the variation of the predictors (X variables).
The X-variable set used in the analysis was each wavelength channel of
the spectrometer detector for the entire wavelength range measured
(4096 variables resulting from the use of two spectrometer channels:
channel 1, 232−494 nm and 0.32 nm resolution; channel 2, 495−1026
nm and 0.6 nm resolution). The Y variable associated with each
channel was the intensity measured by the individual spectrometer
channel.

■ RESULTS AND DISCUSSION

The LIBS spectrum involves combined signals arising from the
sample (contaminant plus substrate) and the atmosphere
surrounding the sample with these signals dependent upon the
experimental conditions used to acquire the spectrum, such as laser
pulse energy, lens to sample distance, etc. The analysis methods
applied in this work are applicable only to the differentiation of a
sample type from a predefined sample group. No claim is being
made that absolute detection of the biological target has been
accomplished here. What is being demonstrated is the ability to
differentially identify a sample or group of samples from a
predefined set using well-defined experimental conditions. Such
analysis is useful for developing LIBS instruments for specific
applications in which experimental conditions can be fixed and in
which the samples to be differentiated can be characterized such
that the natural sample variability is captured in the detection
algorithm (i.e. the range of the variation in sample types is
understood). That is, the differentiation models developed are
applicable only to the equipment configuration used to collect
these data and the specific foods, surfaces, and type of swab used.
The detection algorithm development methodology for different

Figure 4. Prediction results across a range of dilutions obtained for
inputting test spectra into a (A) model designed to differentiate E. coli
on eggshell from control samples and (B) model designed to
differentiate E. coli from S. enterica on eggshell. For ease of viewing,
some symbols have been displaced horizontally from each other.
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equipment configurations or different substrate foods and surfaces
would be the same, however.
The differentiation models are based on single-variable

partial least-squares regression combined with principal
component analysis applied to the recorded LIBS spectrum.
Through an iterative estimation technique, a general model is
developed that includes canonical correlation, redundancy
analysis, multiple regression, multivariate analysis of variance,
and principal components. In this case, only one dependent
variable is being modeled. Once a satisfactory model has been
generated, it is used to produce a “prediction value” (in this
case, between 0 and 10) that is used to match the sample being
tested to one of the samples included in the modeling. The
entire LIBS spectrum from each sample was analyzed to
develop differentiation algorithms, and no attempt was made to
correlate detection to specific atomic or molecular signatures
from the targeted species. Attempts at reducing or limiting the
spectral range being modeled produced poorer prediction
results than those presented here.

Spectral normalization (the maximum peak value within each
spectrum was equal to 1 following the normalization) was
applied to all spectra prior to multivariate analysis. To ensure
that the modeling did not overfit the data, cross-validation
included in The Unscrambler software was used in the model
build and the number of components chosen for the prediction
was selected as suggested by the software. In the cross-
validation, one sample at a time was kept out of the calibration
and used for prediction. This process was repeated until all
samples were kept out once. The validation residual variance
was computed from the prediction residuals to assess error and
determine the appropriate number of components to use in the
prediction to avoid overfitting the data.
For each sample group differentiated, models were created

using half of the total number of spectra collected (model build
spectra). Typically ∼100 spectra were collected per sample.
The spectra not used for the model (∼50) were reserved and
subsequently used to test and evaluate model performance
(verification spectra). The output of the model when a spectrum
was input was a “prediction value” that was correlated to how well

Figure 5. Prediction results obtained for inputting test spectra into a (A) model designed to differentiate viable E. coli on a metal drain strainer from
killed E. coli and a control (single dilution), (B) killed E. coli on bologna from viable E. coli and controls (range of dilutions), (C) S. enterica on raw
chicken (range of dilutions) from raw uncontaminated chicken, and (D) live S. enterica on drain strainer from killed S. enterica, killed E. coli, viable
E. coli, and controls (single dilution). For ease of viewing, some symbols have been displaced horizontally from each other.
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the input sample matched the sample groups used to build the
model. Good discrimination models were defined as those that
resulted in prediction values for the samples being discriminated
such that the sample could be unambiguously associated with the
groups that the model was designed to differentiate. Samples with
high prediction values were associated with the group being
differentiated (e.g., E. coli on eggshell) from the other groups that
were not differentiated among themselves (e.g., TSB on eggshell
and eggshell with water), with these being characterized by low
prediction values. Here, the models were developed so that the
prediction value range spanned 0−10. The choice of the
prediction value range used in the modeling, however, does not
affect the prediction results because the impact of choosing a
different range would just be different maximum and minimum
values on the predictive plots with the prediction values distributed
on the plots with the same relationship to each other over the
range selected. To improve the observed separation in prediction
values, the prediction values obtained by analyzing the verification
spectra for a particular sample (∼50) were averaged (this is
indicated by “average all” in the plots that follow) and the average
prediction values were then used to identify the samples. Figure 2
illustrates the impact of averaging the prediction values prior to
differentiating the sample groups. Unaveraged prediction values
are plotted in Figure 2A, and averaged prediction values are
plotted in Figure 2B. As seen, without averaging, there is no clear
separation between the sample groups upon which to build a
detection algorithm suitable for deployment on an instrument.
After averaging, however, there is a separation between groups and
a prediction value can be chosen to differentiate the samples.
For all samples, it was found possible to build chemometric

models to differentiate contaminated from uncontaminated
samples. Figure 2 shows prediction results obtained for
inputting verification spectra (spectra not included in the
model building) into a model designed to differentiate between
E. coli and S. enterica independent of the metabolic state on a
plastic cutting board from an uncontaminated cutting board
(only water or TSB). This model was created by including spectra
from both the viable and heat-killed E. coli and S. enterica samples

(single dilution) in the modeling as the “care” set (high prediction
value) and the control samples of water and TSB on the cutting
board as the “don’t care” set (low prediction value). As shown, a
gap in the prediction values exists such that a line can be drawn
above which all of the contaminated samples fall.
The ability to differentiate the type of contamination was also

investigated, and it was found possible to differentiate the
contamination type for all of the samples and sample dilutions
studied. Figure 3 shows prediction values obtained for a model
designed to differentiate E. coli independent of the metabolic
state on an aluminum metal drain strainer (viable and killed
E. coli were used as the “care” set, with controls and S. enterica
as the “don’t care” set in the modeling) and for a model
designed to differentiate the entire concentration range of
S. enterica in milk (“care” set) from uncontaminated milk (“don’t
care” set). It is also interesting to note that, in plot A, there is a
gap between the viable E. coli and killed E. coli prediction
values. On an instrument control system, an algorithm could be
implemented using this model that uses one prediction value to

Figure 6. Prediction results obtained from inputting test spectra into a
model designed to differentiate killed E. coli on ground beef from a
control (range of dilutions). For ease of viewing, some symbols have
been displaced horizontally from each other.

Figure 7. Prediction results obtained from inputting test spectra into a
(A) model to differentiate a swab of S. enterica on eggshell (range of
dilutions) from a control swab and (B) model to differentiate a swab
of E. coli on a cutting board from a swab of S. enterica on a cutting
board (single dilution).
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first identify the type of contamination followed by a second
prediction value analysis to subsequently identify the metabolic
state of the detected E. coli.
Figure 4 shows prediction results for a model designed to

differentiate a range of E. coli dilutions on eggshell from control
samples and a model designed to differentiate E. coli from S.
enterica on eggshell (dilutions were used as the “care” set in each
case). As shown, the differentiation models can be designed to
differentiate single dilutions or across a range of dilutions as
desired. It should be noted that, because the differentiation is
based on a prediction value calculated using modeling designed to
produce a matching value based on spectral similarities and
differences to the groups being modeled, it is possible to produce
prediction values above and below the range used in the modeling.
When prediction values outside the range are produced (e.g.,
plot A), this indicates that the input spectra are dissimilar in some
respect to the spectra used to develop the model. This is not an
issue for using the predictive model in an instrument control
system as long as the unknown samples are binning high or low
correctly.
An investigation was also made into the ability to

differentiate the metabolic state, and it was found possible to
differentiate either killed or viable E. coli. Figure 5A shows
prediction value results for models designed to differentiate
viable E. coli on a metal drain strainer from killed E. coli, and
Figure 5B shows differentiation of killed E. coli on bologna from
viable E. coli and controls (range of dilutions). The metabolic
state and type of contamination could also be differentiated
simultaneously if desired. Figure 5C shows prediction value
results for a model designed to differentiate S. enterica on raw
chicken (range of dilutions) from raw uncontaminated chicken,
and Figure 5D shows results from a model to differentiate live
S. enterica on a drain strainer from killed S. enterica, killed E. coli,
viable E. coli, and controls (single dilution). In addition, it was
found that differentiation models could be created using only
killed dilutions that also differentiated viable dilutions even
though the viable dilutions were not included in the modeling.
Figure 6 shows prediction results obtained from inputting test
spectra into a model designed to differentiate killed E. coli
on ground beef (range of dilutions) from a control. Note viable
E. coli is differentiated even though it was not included in the
model building. Similar results were obtained for differentiating
E. coli on lettuce from uncontaminated lettuce.
Lastly, the ability to differentiate samples using LIBS data

collected by sparking on swabs that were used to wipe selected
surfaces was investigated. Differentiation was demonstrated for
all cases studied. Figure 7A shows prediction results obtained
from inputting test spectra into a model designed to
differentiate a swab used to sample S. enterica on eggshell
(range of dilutions) from a control swab. Figure 7B shows
results obtained for a model designed to differentiate a swab
used to sample E. coli on a plastic cutting board from a swab
that sampled S. enterica on a plastic cutting board (single
dilution). As shown, the differentiation results obtained using
swab sampling produced results similar to those obtained using
LIBS data collected directly from the samples.
This study extends previous work dealing with identification of

pesticides and dioxins in tissue fat and rendered oils27 by
employing the same methods to differentiate biological
contaminations on foods and food-processing surfaces. It is
demonstrated that LIBS also has potential as a rapid diagnostic for
the detection of biological contaminants. This approach is different
from previously published works in that the detection developed

here does not determine the presence of the bacteria through the
use of specific emissions believed to be characteristic only of the
bacteria. Instead, the methodology uses a signature characteristic
of the bacteria on the food or surface when sampled with a certain
instrument configuration and specific instrument settings. More
work is needed to fully explore the robustness of analysis using the
LIBS spectra that are combinations of the bacteria, matrix, and
surrounding atmosphere that are then analyzed using an algorithm
developed specifically for the application, where the algorithm is a
combination of discrete discrimination models. The unit cost of a
LIBS instrument is predicted to be comparable to upper end PCR
instruments. The main advantages of LIBS-based technology for
this application will be the speed of analysis, minimal sample
preparation, use of few consumables, and ability to detect pathogens
on all types of surfaces. On the basis of our previous work27,32,33 and
the work described here, we predict that, once the algorithm has
been developed and loaded into a LIBS instrument, a sample could
be analyzed in about 3 min.
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